A Binary Additive Equation Involving Fractional Powers
نویسنده
چکیده
with integers m1, m2; henceforth, [θ] denotes the integral part of θ. Subsequently, the range for c in this result was extended by Gritsenko [3] and Konyagin [5]. In particular, the latter author showed that (1) has solutions in integers m1, m2 for 1 < c < 3 2 and n sufficiently large. The analogous problem with prime variables is considerably more difficult, possibly at least as difficult as the binary Goldbach problem. The only progress in that direction is a result of Laporta [6], which states that if 1 < c < 17 16 , then almost all n (in the sense usually used in analytic number theory) can be represented in the form (1) with primes m1, m2. Recently, Balanzario, Garaev and Zuazua [1] considered the equation
منابع مشابه
A splitting scheme to solve an equation for fractional powers of elliptic operators
An equation containing a fractional power of an elliptic operator of second order is studied for Dirichlet boundary conditions. Finite difference approximations in space are employed. The proposed numerical algorithm is based on solving an auxiliary Cauchy problem for a pseudo-parabolic equation. Unconditionally stable vector additive schemes (splitting schemes) are constructed. Numerical resul...
متن کاملOn the Numerical Solution of One Dimensional Schrodinger Equation with Boundary Conditions Involving Fractional Differential Operators
In this paper we study of collocation method with Radial Basis Function to solve one dimensional time dependent Schrodinger equation in an unbounded domain. To this end, we introduce artificial boundaries and reduce the original problem to an initial boundary value problem in a bounded domain with transparent boundary conditions that involves half order fractional derivative in t. Then in three...
متن کاملA distinct numerical approach for the solution of some kind of initial value problem involving nonlinear q-fractional differential equations
The fractional calculus deals with the generalization of integration and differentiation of integer order to those ones of any order. The q-fractional differential equation usually describe the physical process imposed on the time scale set Tq. In this paper, we first propose a difference formula for discretizing the fractional q-derivative of Caputo type with order and scale index . We es...
متن کاملA numerical scheme for space-time fractional advection-dispersion equation
In this paper, we develop a numerical resolution of the space-time fractional advection-dispersion equation. We utilize spectral-collocation method combining with a product integration technique in order to discretize the terms involving spatial fractional order derivatives that leads to a simple evaluation of the related terms. By using Bernstein polynomial basis, the problem is transformed in...
متن کاملAiry equation with memory involvement via Liouville differential operator
In this work, a non-integer order Airy equation involving Liouville differential operator is considered. Proposing an undetermined integral solution to the left fractional Airy differential equation, we utilize some basic fractional calculus tools to clarify the closed form. A similar suggestion to the right FADE, converts it into an equation in the Laplace domain. An illustration t...
متن کامل